

nag_gamma (s14aac)

1. Purpose

nag_gamma (s14aac) returns the value of the Gamma function $\Gamma(x)$.

2. Specification

```
#include <nag.h>
#include <nags.h>

double nag_gamma(double x, NagError *fail)
```

3. Description

This function evaluates

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

The function is based on a Chebyshev expansion for $\Gamma(1+u)$, and uses the property $\Gamma(1+x) = x\Gamma(x)$. If $x = N + 1 + u$ where N is integral and $0 \leq u < 1$ then it follows that:

$$\begin{aligned} \text{for } N > 0 \quad \Gamma(x) &= (x-1)(x-2)\dots(x-N)\Gamma(1+u) \\ \text{for } N = 0 \quad \Gamma(x) &= \Gamma(1+u) \\ \text{for } N < 0 \quad \Gamma(x) &= \Gamma(1+u)/x(x+1)(x+2)\dots(x-N-1). \end{aligned}$$

There are four possible failures for this function:

- (i) if x is too large, there is a danger of overflow since $\Gamma(x)$ could become too large to be represented in the machine;
- (ii) if x is too large and negative, there is a danger of underflow;
- (iii) if x is equal to a negative integer, $\Gamma(x)$ would overflow since it has poles at such points;
- (iv) if x is too near zero, there is again the danger of overflow on some machines.

For small x , $\Gamma(x) \simeq 1/x$, and on some machines there exists a range of non-zero but small values of x for which $1/x$ is larger than the greatest representable value.

4. Parameters

x

Input: the argument x of the function.

Constraint: x must not be zero or a negative integer.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_REAL_ARG_GT

On entry, x must not be greater than $\langle value \rangle$: $x = \langle value \rangle$.

The argument is too large, the function returns the approximate value of $\Gamma(x)$ at the nearest valid argument.

NE_REAL_ARG_LT

On entry, x must not be less than $\langle value \rangle$: $x = \langle value \rangle$.

The argument is too large and negative, the function returns zero.

NE_REAL_ARG_TOO_SMALL

On entry, x must be greater than $\langle value \rangle$: $x = \langle value \rangle$.

The argument is too close to zero, the function returns the approximate value of $\Gamma(x)$ at the nearest valid argument.

NE_REAL_ARG_NEG_INT

On entry, x must not be effectively a negative integer: $x = \langle value \rangle$.

The argument is a negative integer, at which values $\Gamma(x)$ is infinite. The function returns a large positive value.

6. Further Comments

6.1. Accuracy

Let δ and ϵ be the relative errors in the argument and the result respectively. If δ is somewhat larger than the **machine precision** (i.e., is due to data errors etc.), then ϵ and δ are approximately related by $\epsilon \simeq |x\psi(x)|\delta$ (provided ϵ is also greater than the representation error). Here $\psi(x)$ is the digamma function $\Gamma'(x)/\Gamma(x)$.

If δ is of the same order as **machine precision**, then rounding errors could make ϵ slightly larger than the above relation predicts.

There is clearly a severe, but unavoidable, loss of accuracy for arguments close to the poles of $\Gamma(x)$ at negative integers. However, relative accuracy is preserved near the pole at $x = 0$ right up to the point of failure arising from the danger of setting overflow.

Also accuracy will necessarily be lost as x becomes large since in this region $\epsilon \simeq \delta x \ln x$. However, since $\Gamma(x)$ increases rapidly with x , the function must fail due to the danger of setting overflow before this loss of accuracy is too great. For example, for $x = 20$, the amplification factor $\simeq 60$.

6.2. References

Abramowitz M and Stegun I A (1968) *Handbook of Mathematical Functions* Dover Publications, New York ch 6 p 255.

7. See Also

nag_log_gamma (s14abc)
nag_incomplete_gamma (s14bac)

8. Example

The following program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

8.1. Program Text

```
/* nag_gamma(s14aac) Example Program
 *
 * Copyright 1990 Numerical Algorithms Group.
 *
 * Mark 2 revised, 1992.
 */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

main()
{
    double x, y;

    /* Skip heading in data file */
    Vscanf("%*[^\n]");
    Vprintf("s14aac Example Program Results\n");
    Vprintf("      x          y\n");
    while (scanf("%lf", &x) != EOF)
    {
        y = s14aac(x, NAGERR_DEFAULT);
        Vprintf("%12.3e%12.3e\n", x, y);
    }
    exit(EXIT_SUCCESS);
}
```

8.2. Program Data

```
s14aac Example Program Data
      1.0
      1.25
      1.5
      1.75
      2.0
      5.0
     10.0
    -1.5
```

8.3. Program Results

```
s14aac Example Program Results
      x          y
 1.000e+00  1.000e+00
 1.250e+00  9.064e-01
 1.500e+00  8.862e-01
 1.750e+00  9.191e-01
 2.000e+00  1.000e+00
 5.000e+00  2.400e+01
 1.000e+01  3.629e+05
-1.500e+00  2.363e+00
```
